Table II. N-Aryl-N'-(triorganostannyl)-N', N''-dicyanoguanidines (RNHC(NCN)N(CN)SnR' $_3$)^a

		IR spectra ^c					C ₆ H ₅ ring vibration	SnC, H, (8, 9-13)	
no.	R	R'	mp, ^b °C	NH	C≡N	C=N	(6-8)	vas .	$\frac{\nu_{s}}{\nu_{s}}$
VI	C ₆ H ₅	C ₆ H ₅	185-187	3401 m	2165 s	1563 s	451 s	277 s ^d	230 s
VII	2-naphthyl	C, H,	210-212	3390 m	2203 s, 2155 s	1563 s	452 s ^e	276 s ^f	226 s
VIII	$p \cdot FC_6 H_4$	C ₆ H	163-165	3378 m	2165 s	1563 s	451 s ^g	277 s ^h	232 s
IX	p-C,H,OC,H	C, H,	195-196	3367 w, 3205 w	2160 s	1563 s	452 s	275 s ⁱ	227 s
X	$p \cdot O_2 NC_6 H_4$	Č ₆ H,	210-212	3390 m	2165 s	1570 s	451 s ⁱ	267 s ^k	231 s
XI^l	C, H,	CH,	180-182	3245 w, 3268 m	2212 s, 2169 s	1563 s			
XII^m	2-naphthyl	CH ₃	186.5-187.5	3289 w, 3413 w	2212 s, 2169 s	1590 s			

^a Elemental analyses (C, H, N, F, and Sn) in agreement with theoretical values were obtained and submitted for review. ^b Refers to the analytical sample; recrystallization solvents were ethyl acetate (VI-VIII), acetonitrile (X-XII), and benzene (IX). ^c Values are expressed in cm⁻¹; s = strong, m = medium, w = weak. ^d Bands were present at 375 w and 342 cm⁻¹. ^e A band was present at 476 m cm⁻¹. ^f A band was present at 340 w cm⁻¹. ^g A band was present at 482 m cm⁻¹. ^h Bands were present at 377 w, 361 m, and 316 w cm⁻¹. ⁱ A band was present at 376 cm⁻¹. ^j A band was present at 490 w cm⁻¹. ^k Bands were present at 180 s, 202 m, 330 s, and 377 s cm⁻¹. ^l Bands were present at 551 s [ν_{as} (SnC)], 617 m, 500 m [(ν_{s} (SnC)], 380 w, 352 s, 284 s, and 208 m cm⁻¹. ^m Bands were present at 550 s [ν_{as} (SnC)], 597 w, 513 w, 499 w [ν_{s} (SnC)], and 468 s cm⁻¹.

and filtered to give 8.64 g (24%) of pure *N*-phenyl-*N'*-diethyl-*N''*-cyanoguanidine (II, Table I), mp 123–125 °C. The ethanol was evaporated from the filtrate, the residue was stirred with ethyl acetate, and the mixture was filtered to give 8.08 g (27%) of additional II, mp 123–125 °C (total yield of II, 51%).

Reaction of Bis (triphenylstannyl) carbodiimide with Ethyl N-(p-Ethoxyphenyl) thiocarbamate. A mixture of bis(triphenylstannyl)carbodiimide (14.80 g, 0.02 mol), ethyl N-(p-ethoxyphenyl)thiocarbamate (4.51 g, 0.02 mol), and acetonitrile (250 mL) was refluxed for 17 h. The acetonitrile was evaporated from the filtrate, the residue was stirred with carbon tetrachloride (200 mL), and the mixture was filtered to give 3.78 g of material, mp 138–140 °C. This material was stirred with hot ethanol, and the mixture was filtered to give 1.77 g (31%) of N-(p-ethoxyphenyl)-N'-(triphenylstannyl)-N', N''-dicyanoguanidine (IX, Table II), mp 193–195 °C. A single recrystalization from benzene raised the melting point to 195–196 °C.

The carbon tetrachloride was evaporated from the original filtrate, the residue was stirred with hot ethanol (75 mL), and the mixture was cooled and filtered to give 10.69 g of bis(triphenyltin) sulfide, mp 140–141 °C.

Preparation of N-Phenyl-N'-(trimethylstannyl)-N',N''-dicyanoguanidine (XI, Table II). A mixture of bis(trimethylstannyl)carbodiimide (7.35 g, 0.02 mol), ethyl N-phenylthiocarbamate (3.63 g, 0.02 mol), and acetonitrile (250 mL) was refluxed for 15 h. The mixture was allowed to cool to 25 °C and then was filtered. The solvent was evaporated from the filtrate, the residue was stirred with carbon tetrachloride (250 mL), and the mixture was filtered to give 2.88 g of material, mp 145–150 °C. Recrystallization of this material from acetonitrile afforded 1.46 g (42%) of crude N-phenyl-N'-(trimethylstannyl)-N',N''-dicyanoguanidine, mp 168–170 °C. A second recrystallization from acetonitrile gave 1.15 g (33%) of pure product, mp 180–182 °C. **Preparation of N-(2-Naphthyl)-N'-(trimethylstannyl)-N',** N''-dicyanoguanidine (XII, Table II). A mixture of bis(trimethylstannyl)carbodlimide (7.35 g, 0.02 mol), ethyl N-(2naphthyl)thiocarbamate (4.63 g, 0.02 mol), and acetonltrile (250 mL) was refluxed for 15 h. The acetonitrile was evaporated, the residue was stirred with carbon tetrachloride (250 mL) for 2 h, and the mixture was filtered to give 4.11 g of material, mp 130–145 °C. Recrystallization of this material from ethyl acetate/diethyl ether afforded 0.183 g (5%) of pure N-(2naphthyl)-N'-(trimethylstannyl)-N', N''-dicyanoguanidine, mp 184.5–185.5 °C. Recrystallization from acetonitrile gave the analytical sample, mp 186.5–187.5 °C.

Literature Cited

- (1) Cardona, R. A.; Kupchik, E. J. J. Organomet. Chem. 1972, 34, 129.
- (2) Kupchik, E. J.; Hanke, H. E. J. Organomet. Chem. 1975, 9, 39.
 (3) Hanke, H. E. Ph.D. Dissertation, St. John's University, Jamaica, NY,
- (4) Cardona, R. A.; Kupchik, E. J.; Hanke, H. E. J. Organomet. Chem.
- (4) Cardona, n. A., Kupenik, E. J., nanke, n. E. J. Organomet. Chem. 1970, 24, 371.
 (5) Okawara, R.; Wada, M. Adv. Organomet. Chem. 1967, 5, 137.
- (6) Cattenach, C. J.; Mooney, E. F. Spectrochim. Acta, Part A 1968, 24,
- 407. (7) Verdonck, L.; van der Kelen, G. P. J. Organomet. Chem. 1972, 40,
- (a) Poller, R. C. Spectrochim. Acta 1966, 22, 935.
- (9) May, J. R.; McWhinnie, W. R.; Poller, R. C. Spectrochim. Acta, Part A
- (10) Srivastava, T. N.; Tandon, S. K. Spectrochim. Acta, Part A 1971, 27,
- 593.
- (11) Srivastava, T. S. J. Organomet. Chem. 1969, 16, 53.
 (12) Wharf, I.; Lobos, J. Z.; Onyszchuk, M. Can. J. Chem. 1970, 48,
- 2787. (13) Dance, N. S.; McWhinnie, W. R.; Poller, R. C. J. Chem. Soc., Dalton Trans. 1976. 2349.
- (14) Reichle, W. T. J. Org. Chem. 1961, 26, 4634.

Received for review May 16, 1980. Accepted August 5, 1980.

Studies on Cycloimmonium Ylides. Synthesis of Some 2,4,6-Triaryl-Substituted Pyridines via Picolinium Ylides

Ram. S. Tewari,* Ajay K. Dubey, Naresh K. Misra, and Priya D. Dixit

Department of Chemistry, H. B. Technological Institute, Kanpur-208002, India

A wide variety of 2,4,6-triaryl-substituted pyridines have been synthesized by the interaction of aroylmethylenepicolinium yildes with different α,β -unsaturated ketones. The structural assignments were based on microanalytical and spectral data.

Introduction

Extensive studies have been carried out in the reactions of pyridinium ylides and isoquinolinium ylides with α , β -unsaturated ketones following the first reports of Krohnke et al.¹⁻⁹ Almost no work has been done on picolinium ylides, and we therefore

Table I. Structure and Physical Properties of 2,4,6-Triaryl-Substituted Pyridines (Compounds 4a-u)^a

molecular					mp, ° C		%	recrystallization	
compd	formula	R ¹	R²	R ³	obsd	lit.	yield	solvent	
4a	C ₂₃ H ₁₇ N	C ₆ H ₅	C,H,	C ₆ H ₅	138-139	137–138 ^b	60	C,H,N-MeOH	
4b	$C_{23}H_{15}Cl_{2}N$	C ₆ H ₅	4-ClC ₆ H₄	4-ČlČ₄H₄	136-137	138–140 ^c	60	C,H,N-MeOH	
4c	$C_{30}H_{21}NO_2$	C,H,	3,4-CH ₂ O ₂ C ₆ H ₃	4-biphenyl	156-158	155–156°	60	CHCi,-MeOH	
4d	$C_{29}H_{21}N$	C ₆ H ₅	C ₆ H ₅	4-biphenyl	135-136	138-139 ^d	55	C,H,N-MeOH	
4e	$C_{26}H_{23}NO_{2}$	C ₆ H ₅	3,4-(OCH ₃) ₂ C ₆ H ₃	4-CH ₃ C ₆ H ₄	116-118	120-121°	60	C, H, N-MeOH	
4f	$C_{25}H_{18}CIN$	4-CIC ₆ H₄	4-CH ₃ C ₆ H ₄	4-CH ₃ C ₆ H ₄	1 79- 181	183–184°	55	CHCl ₃ -MeOH	
4g	C ₂₄ H ₁₅ CINO ₂	4-CIC ₆ H ₄	3,4-CH ₂ O ₂ C ₆ H ₃	4-CIC ₆ H ₄	186-188	188–189°	60	CHCl ₃ -MeOH	
4h	$C_{2}H_{17}Cl_{2}NO$	4-ClC ₆ H₄	4-OCH ₃ C ₆ H ₄	4-CIC ₆ H ₄	183-184	180–181°	60	CHCl ₃ -MeOH	
4i	C ₂₅ H ₂₀ CINO ₂	4-ClC ₆ H ₄	3,4-(OCH ₃) ₂ C ₆ H ₃	C,H,	100-101	100–101 ^c	50	C, H, N-MeOH	
4j	C ₂₆ H ₂₂ C1NO ₂	4-ClC ₆ H₄	$3,4-(OCH_3)_2C_6H_3$	4-CH ₃ C ₆ H ₄	134-136	140–141°	50	C, H, N-MeOH	
4k	$C_{25}H_{21}NO$	4-CH ₃ C ₆ H ₄	C,H,	4-OCH ₃ C ₆ H ₄	98-100		50	C, H, N-MeOH	
41	$C_{26}H_{23}N$	4-CH ₃ C ₆ H ₄	4-CH ₃ C ₆ H ₄	4-CH ₃ C ₆ H ₄	170-172		60	CHCl, -MeOH	
4m	C ₂₆ H ₂₃ NO ₂	4-CH ₃ C ₆ H ₄	4-OCH ₃ C ₆ H ₄	4-OCH ₃ C ₆ H ₄	120-122		50	C,H,N-MeOH	
4n	C ₂₆ H ₂₃ NO ₂	4-CH ₃ C ₆ H ₄	3,4-(OCH ₃),C ₆ H ₃	C,H,	108-112		55	CHCl,-MeOH	
4 o	$C_{26}H_{23}NO$	$4-CH_3C_6H_4$	4-OCH ₃ C ₆ H ₄	4-CH ₃ C ₆ H ₄	143-146		50	C,H,N-MeOH	
4p	$C_{27}H_{26}N_{2}O$	4-CH ₃ C ₆ H ₄	$4-N(CH_3)_2C_6H_4$	4-OCH ₃ C ₆ H ₄	120-121		45	CHCl,-MeOH	
4q	$C_{26}H_{23}ClN_{2}$	4-CH ₃ C ₆ H ₄	$4-N(CH_{3})_{2}C_{6}H_{4}$	4-ClC₄H₄	130-139		50	C,H,N-MeOH	
4r	$C_{26}H_{22}CINO_2$	4-CH ₃ C ₆ H ₄	3,4-(OCH ₃),C,H,	4-CIC ₆ H ₄	133-134		60	CHCl,-MeOH	
4s	$C_{25}H_{20}N_{2}O_{3}$	4-CH ₃ C ₆ H ₄	4-OCH ₃ C ₆ H ₄	3-NO ₂ C ₆ H ₄	138-140		50	CHCl ₃ -MeOH	
4t	$C_{26}H_{22}N_{2}O_{4}$	4-CH ₃ C ₆ H ₄	3,4-(OCH ₃) ₂ C ₆ H ₃	3-NO ₂ C ₆ H ₄	153-155		45	C _s H _s N–MeOH	
4u	C ₂₅ H ₂₀ CINO	4-CH ₃ C ₆ H ₄	4-ClC ₆ H₄	4-OCH₃ČℴH₄	112		50	C,H,N-MeOH	

^a Satisfactory elemental analyses were obtained for all compounds. ^b Reference 1. ^c Reference 8. ^d Reference 9.

Table II. NMR and IR Spectral Data for 2,4,6-Triaryl-Substituted Pyridines (4a-u)

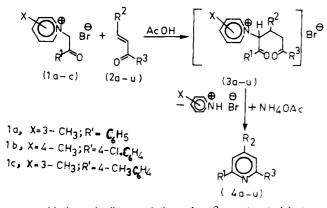
	NMR data $(CDCl_3)$, ^{<i>a</i>}	IR data (KBr), cm ⁻¹			
compd	aliphatic H	aromatic H	C-H str vibr	C=C vibr	C=N vibr
4a			3150	1595	1465
4Ъ			3035	1600	1540
4 c	6.04s, CH ₂ O ₂	6.85-8.20m	3030	1595	1540
4d					
4e	2.35s, CH ₃ 3.85-3.95d, OCH ₃	6.93-8.13m	2990	1595	1545
4f	2.40s, CH,	7.20-8.16m			
4g	6.00s, CH ₂ O ₂	6.96-8.10m			
4ĥ	3.76s, OCH ₃	6.80-8.00m			
4 i	3.70-3.75d, OCH ₃ ($J = 5$ Hz)	6.70 - 7.80m			
4j	2.40s, CH,				
•	3.85-3.90d, OCH ₃ ($J = 5$ Hz)	7.03-8.20m			
4k	2.42s, CH ₃	C 00 8 20	2040	1605	1545
	3.82s, OCH ₃	6.90-8.38m	3040	1605	1545
41	2.42s, CH,	7.16-8.54m	3015	1600	1540
4m			3110	1601	1500
4n	2.34s, CH ₃	6.63-8.11m			
	3.78d, OCH ₃	0.05-0.1111			
40	2.62s, CH ₃	6.94-8.60m	3000	1605	1540
	3.98s, OCH ₃	0.74-0.0011	5000	1005	1540
4p	2.76s, CH ₃	6.72-8.36m	2900	1590	1510
	3.88s, OCH ₃				
4q	2.82s, CH ₃	6.80-8.32m	3015	1595	15 2 5
4r			3020	1600	1490
4 s			294 0	1600	1520
4t			2990	1585	1520
4u	2.42s, CH ₃ 3.88s, OCH ₃	6.98-8.32m			

a s = singlet, d = doublet, m = multiplet.

report here the synthesis of some 2,4,6-triaryl-substituted pyridines via phenacyl- β -picolinium ylide, 4-chlorophenacyl- γ picolinium ylide, and 4-methylphenacyl- β -picolinium ylides.

Results and Discussion

Phenacyl- β -picolinium bromide (1a), 4-chlorophenacyl- γ -picolinium bromide (1b), and 4-methylphenacyl- β -picolinium bromide (1c) were prepared by quaternization of picolines with α -bromoacetophenones in almost 80% yields.


Various pyridines synthesized during this study, most of which are known to the literature, are listed in Table I. Their structures were supported by literature melting points, microanalyses which are in good accord with the calculated values, and spectral evidence (Table II).

Experimental Section

Melting points were measured on a Gallen Kamp apparatus and were uncorrected. The IR spectra were recorded on a Perkin-Eimer Infracord spectrophotometer in potassium bromide. The NMR spectra (CDCl₃) were run with a Varian A-60 spectrometer using tetramethylsilane as internal standard. Analytical samples were purified by column chromatography over neutral alumina, and purity was checked by thin-layer chromatography (TLC).

Picolinium salts were prepared by the treatment of α -bromo ketones and picolines in benzene at reflux temperature.

Preparation of 2,4,6-Triaryl-Substituted Pyridines (4a-u). To a stirred solution of 3 mmol of picolinium salts (1a-c) in 10 mL of glacial acetic acid in the presence of ammonium acetate Scheme I

was added gradually a solution of α , β -unsaturated ketones (2a-u, 3 mmol) in 30 mL of glacial acetic acid under an inert atmosphere of nitrogen. The mixture was then heated under reflux for 6-8 h, and then it was kept overnight at room temperature. On the next day, ice-cold water (50 mL) was added to it, and the precipitate thus obtained was separated, washed with methanol, dried, and recrystallized from an appropriate

solvent mentioned in Table I to yield 2,4,6-triaryl-substituted pyridines (4a-u) (Scheme I).

Acknowledgment

We thank Director, H. B. Technological Institute, Kanpur 208002, for providing necessary facilities.

Literature Cited

- (1)
- (2)
- Krohnke, F.; Zecher, W. Chem. Ber. **1961**, *94*, 690. Krohnke, F.; Angew. Chem., Int. Ed. Engl. **1963**, *2*, 225, 380. Kendurkar, P. S.; Tewari, R. S. J. Chem. Eng. Data **1974**, *19*, 184. Kendurkar, P. S.; Tewari, R. S. Z. Naturforsch B **1974**, *29*, 552. (3) (4)
- Madhav, R. Synthesis 1973. (5)
- Tewari, R. S.; Gupta, K. C. Indian J. Chem., Sect. B 1976, 14, 829. (6)
- Tewari, R. S.; Nagpal, D. K.; Chaturvedi, S. C. Indian J. Chem., in (7)
- (8)
- press. Tewari, R. S.; Dubey, A. K. J. Chem. Eng. Data **1980**, 25, 91. Tewari, R. S.; Dubey, A. K. Indian J. Chem. Sect. B **1980**, *19*, 153. (9)

Received for review May 30, 1980. Accepted August 13, 1980. One of us (A.K.D.) is thankful to CSIR, New Delhi, for the award of a Senior Research Fellowship. N.K.M. is thankful to UGC for financial assistance.

Correction

Aqueous Dissociation of Acetylenedicarboxylic Acid. Lowell M. Schwartz, Robert I. Gelb, and Daniel A. Laufer, J. Chem. Eng. Data 1980, 25, 95-6.

The first sentence inadvertently neglects to reference the more recent (1973) determination of acid dissociation constants at 25 °C reported by Pethybridge, A. D. J. Chem. Soc., Perkin Trans. 2 1973, 102-4, who utilized the hydrogen-ion dependence of the rate of inversion of aqueous sucrose in order to calculate the concentrations of acetylenedicarboxylic acid species. Although this technique is markedly different from ours, he obtained $pK_{a1} = 0.664$ and $pK_{a2} = 2.365$ by assuming a Debye-Huckel ion-size parameter a = 0.61 nm for mean ionic activity coefficients, while we obtained $pK_{a1} = 0.656$ and $pK_{a2} = 2.336$ at 25 °C by using a = 0.75 nm. Considering that our values have estimated statistical uncertainties of ±0.036 and ± 0.014 for pK_{a1} and pK_{a2}, respectively, and that assumptions about activity coefficients introduce systematic errors as well, the agreement between the two sets of results is gratifying.